import numpy as np
from PIL import ImageGrab
import cv2
import time
def process_img(image):
    original_image = image
    # convert to gray
    processed_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # edge detection
    processed_img =  cv2.Canny(processed_img, threshold1 = 200, threshold2=300)
    return processed_img
def main():
    last_time = time.time()
    while True:
        screen =  np.array(ImageGrab.grab(bbox=(0,40,800,640)))
        #print('Frame took {} seconds'.format(time.time()-last_time))
        last_time = time.time()
        new_screen = process_img(screen)
        cv2.imshow('window', new_screen)
        #cv2.imshow('window',cv2.cvtColor(screen, cv2.COLOR_BGR2RGB))
        if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break
#main()
Looking great!
In my excitement of getting the screen recording working, I haven't yet tested PyAutoGUI, so we can do that now.
import pyautogui
import time
# gives us time to get situated in the game
for i in list(range(4))[::-1]:
    print(i+1)
    time.sleep(1)
print('down')
pyautogui.keyDown('w') 
time.sleep(3)
print('up')
pyautogui.keyUp('w') 
Nothing.
What gives?
Well, after some research, I've found that the way that PyAutoGUI is sending keys isn't what many current games want, they want "Direct Input."
Hmm, okay. I found more information here:
http://stackoverflow.com/questions/14489013/simulate-python-keypresses-for-controlling-a-game
There, we have the following code provided as a solution, modified only slightly by me to not do anything and to save W,S,A and D as constants, so we can easily call them later.
I am saving this as directkeys.py:
# direct inputs
# source to this solution and code:
# http://stackoverflow.com/questions/14489013/simulate-python-keypresses-for-controlling-a-game
# http://www.gamespp.com/directx/directInputKeyboardScanCodes.html
import ctypes
import time
SendInput = ctypes.windll.user32.SendInput
W = 0x11
A = 0x1E
S = 0x1F
D = 0x20
# C struct redefinitions 
PUL = ctypes.POINTER(ctypes.c_ulong)
class KeyBdInput(ctypes.Structure):
    _fields_ = [("wVk", ctypes.c_ushort),
                ("wScan", ctypes.c_ushort),
                ("dwFlags", ctypes.c_ulong),
                ("time", ctypes.c_ulong),
                ("dwExtraInfo", PUL)]
class HardwareInput(ctypes.Structure):
    _fields_ = [("uMsg", ctypes.c_ulong),
                ("wParamL", ctypes.c_short),
                ("wParamH", ctypes.c_ushort)]
class MouseInput(ctypes.Structure):
    _fields_ = [("dx", ctypes.c_long),
                ("dy", ctypes.c_long),
                ("mouseData", ctypes.c_ulong),
                ("dwFlags", ctypes.c_ulong),
                ("time",ctypes.c_ulong),
                ("dwExtraInfo", PUL)]
class Input_I(ctypes.Union):
    _fields_ = [("ki", KeyBdInput),
                 ("mi", MouseInput),
                 ("hi", HardwareInput)]
class Input(ctypes.Structure):
    _fields_ = [("type", ctypes.c_ulong),
                ("ii", Input_I)]
# Actuals Functions
def PressKey(hexKeyCode):
    extra = ctypes.c_ulong(0)
    ii_ = Input_I()
    ii_.ki = KeyBdInput( 0, hexKeyCode, 0x0008, 0, ctypes.pointer(extra) )
    x = Input( ctypes.c_ulong(1), ii_ )
    ctypes.windll.user32.SendInput(1, ctypes.pointer(x), ctypes.sizeof(x))
def ReleaseKey(hexKeyCode):
    extra = ctypes.c_ulong(0)
    ii_ = Input_I()
    ii_.ki = KeyBdInput( 0, hexKeyCode, 0x0008 | 0x0002, 0, ctypes.pointer(extra) )
    x = Input( ctypes.c_ulong(1), ii_ )
    ctypes.windll.user32.SendInput(1, ctypes.pointer(x), ctypes.sizeof(x))
if __name__ == '__main__':
    PressKey(0x11)
    time.sleep(1)
    ReleaseKey(0x11)
    time.sleep(1)
We get a full list of direct x scan codes here: http://www.gamespp.com/directx/directInputKeyboardScanCodes.html
We're interesting in W, A, S, and D for now:
W = 0x11
A = 0x1E
S = 0x1F
D = 0x20
Now, we can incorporate this into our code:
import numpy as np
from PIL import ImageGrab
import cv2
import time
import pyautogui
from directkeys import PressKey, W, A, S, D
def process_img(image):
    original_image = image
    # convert to gray
    processed_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # edge detection
    processed_img =  cv2.Canny(processed_img, threshold1 = 200, threshold2=300)
    return processed_img
def main():
    
    for i in list(range(4))[::-1]:
        print(i+1)
        time.sleep(1)
    last_time = time.time()
    while True:
        PressKey(W)
        screen =  np.array(ImageGrab.grab(bbox=(0,40,800,640)))
        #print('Frame took {} seconds'.format(time.time()-last_time))
        last_time = time.time()
        new_screen = process_img(screen)
        cv2.imshow('window', new_screen)
        #cv2.imshow('window',cv2.cvtColor(screen, cv2.COLOR_BGR2RGB))
        if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break
#main()
Next, we need to get serious about finding the lanes.
